Institute of Materials Chemistry
> Zum Inhalt


Univ.Prof. Mag.rer.nat. Dr.rer.nat. Günther Rupprechter

Getreidemarkt 9/165
1060 Wien

Tel.: +43/1/58801-165100
Fax: +43/1/58801-165980



Rupprechter Research Group
Model Catalysis and Applied Catalysis

My group´s strategy is to study catalytic surface reactions on heterogeneous catalysts via a three-fold approach, employing surface science based planar model catalysts, atomically-precise clusters, as well as industrial-grade catalysts. For all, the focus is on examining active functioning catalysts under operando conditions, at (near) atmospheric pressure and at elevated temperature.

From left to right:
Thomas Haunold, Christoph Rameshan, Abdul Motin, Abhijit Bera, Matteo Roiaz, Noelia Barrabes, Günther Rupprechter, Xia Li, Kresimir Anic, Clara Garcia, Nevzat Yigit, Vera Truttmann, Klaus Dobrezberger, Verena Pramhaas, Andreas Nagl, Ulrike Prohaska

Research directions include:

1. Surface Science Based Model Catalysts

(in colloboration with Assoc.Prof. Yuri Suchorski and Univ.Ass. Dr. Christoph Rameshan)

Model catalysts such as single crystals, thin films, polycrystalline foil and supported nanoparticles are prepared in UHV and characterized by XPS, IRAS, SFG, STM, LEED, AES, LEIS, TPD, etc. After transfer into UHV-compatible high pressure cells (“Rupprechter design”), operando studies of the catalytically active surfaces are performed by polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) and sum frequency generation (SFG) laser spectroscopy. Near atmospheric pressure X-ray photoelectron spectroscopy (NAP-XPS) and X-ray absorption (XAS) are performed at various synchrotron sources.
Link to Detailed Information

To image (“see”) ongoing surface reactions by in situ surface microscopy, photoemission electron microscopy (PEEM) is applied to polycrystalline foil, thin films and oxide supported (micrometre) particles.

Link to Detailed Information

Group members:
Kresimir Anic, DI Ph.D. Student
Matteo Roiaz, MSc. Ph.D. Student
Verena Pramhaas, MSc.  Ph.D. Student
Xia Li, Ph.D. Postdoc
Motin Md. Abdul, Ph.D Postdoc
Thomas Haunold, BSc Studentischer Mitarbeiter
Former group members:
Dr. Abhijit Bera
Dr. Hao Li
Dr. Christian Weilach
Dr. Harald Helmuth Holzapfel

PM-IRAS system: UHV chamber (LEED, AES, TPD, XPS) with high pressure cell (PM-IRAS, MS)
SFG system: UHV chamber (LEED, AES, TPD) with high pressure cell (SFG, MS)
STM system: UHV chamber (LEED, XPS, LEIS, TPD) with VT-STM
PEEM system: UHV chamber (LEED, XPS, MIES, MS) with PEEM
Microreactor system: UHV chamber (sample preparation) with flow-microreactor (GC, MS)

Link to Detailed Information

2. Atomically-Precise Supported Clusters

(in colloboration with Univ.Ass. Dr. Noelia Barrabes)

Metal clusters are synthesized with precise atomic number (< 100 atoms) and, when deposited on a support, comprise truly monodisperse catalysts.  The catalytic properties of clusters are often unique, due to their quantized electronic structure and specific atomic structure, and may differ strongly from those of larger nanoparticles (> 100 atoms). The possibility of creating atomically precise doped nanoclusters should finally yield improved catalysts and a better understanding of nanocatalysis. Operando XAS studies are performed at synchrotron sources.

Group members:
Clara Garcia-Yago (PhD Student)
Stephan Pollitt  (Master Student)
Vera Truttmann  (Master Student)

DRIFTS, UV-Vis, PL, reactors (GC, MS)


3. Industrial-grade (Applied) Catalysts

(in colloboration with Ass.Prof. Karin Föttinger)

Studies of technological catalysts, preferentially under operando conditions, are performed by Fourier transform infrared spectroscopy (FTIR), X-ray absorption spectroscopy (XAS), NAP-XPS, and X-ray diffraction (XRD). Most of the operando studies were performed at synchrotron sources.

Group members:
Nevzat Yigit (PhD Student)
Klaus Dobrezberger  (PhD Student)

Former group members:
Dr. Liliana Lukashuk
Dr. Astrid Wolfbeisser
Dr. Andreas Haghofer
Dr. Katrin Zorn
DI Elisabeth Kolar
Mag. Dilek Demir
DI Waltraud Emhofer

FTIR, DRIFTS, chemisorption, TPD/O/R, UV-Vis, various (automated) reactors (GC, MS)

Link to detailed Information



This three-fold approach yields a more “holistic” view of the catalytically relevant atomic and electronic surface structure of catalysts, as well as of molecular details that steer reaction activity and, even more important, reaction selectivity. Comparing surface science based single crystals with nanoparticle model catalysts elucidates the materials gap, and comparing UHV to ambient pressure studies reveals the pressure gap. In particular, synergisms between studies on model and technological catalysts often provide access to atomistic details.

Among the systems recently studied (see references below) are
ii) CO oxidation and H2/CO/O2 reaction (PROX) on supported and unsupported noble metals, Co3O4 and CoO thin films UHV-grown on Ir(100), and commercial cobalt oxides,
iii) methane reforming on Ni-ZrO2 and CuNi-ZrO2, employing an ultrathin ZrO2 trilayer (O-Zr-O) film on Pt3Zr(0001) as well as commercial ZrO2 as support.

For all, the operando studies identify the relevant surface processes, providing further atomistic insight on dynamics, such as changes of the surface and bulk oxidation state (oxygen vacancy formation), metal-support interface effects, reaction-induced surface segregation, surface hydroxylation, adsorbed species, and others.


Recent Publications

“Supported liquid metal catalysts: Popping up to the surface”
Günther Rupprechter
Nature Chemistry 9 (2017) 833-834.

"Visualizing Catalyst Heterogeneity by a Multifrequential Oscillating Reaction"
Yuri Suchorski, Martin Datler, Ivan Bespalov, Johannes Zeininger, Michael Stöger – Pollach, Johannes Bernardi, Henrik Grönbeck, Günther Rupprechter
Nature Communications, 9 (2018), 600 (1-6).
DOI: 10.1038/s41467-018-03007-3

"The role of metal-oxide interfaces for long range metal particle activation during CO oxidation"
Yuri Suchorski, Sergey M. Kozlov, Ivan Bespalov, Martin Datler, Diana Vogel, Zuzana Budinska, Konstantin M. Neyman, Günther Rupprechter
Nature Materials, in press (2018).


Ni-ZrO2 and related systems – Methane Reforming

Adsorption and reaction of CO on (Pd-)Al2O3 and (Pd-)ZrO2: Vibrational spectroscopy of carbonate formation
Karin Föttinger, Waltraud Emhofer, David Lennon, Günther Rupprechter
Topics in Catalysis, in press

Surface Composition Changes of CuNi-ZrO2 during Methane Decomposition: An operando NAP-XPS and Density Functional Study
A. Wolfbeisser, G. Kovács, S. M. Kozlov, K. Föttinger, J. Bernardi, B. Klötzer,
K. M. Neyman,  G. Rupprechter
Catalysis Today, 283 (2017) 134-143. 

Methane dry reforming over ceria-zirconia supported Ni catalysts
A. Wolfbeisser, O. Sophiphun, J. Bernardi, J. Wittayakun, K. Föttinger, G. Rupprechter
Catalysis Today, 277 (2016) 234 -245.

Surface spectroscopy on UHV-grown and technological Ni-ZrO2 reforming catalysts:
from UHV to operando conditions
K. Anic, A. Wolfbeisser, H. Li, C. Rameshan, K. Föttinger, J. Bernardi, G. Rupprechter *
Topics in Catalysis, 59 (2016) 1614 – 1627.

“Ni–CeO2–ZrO2 catalysts for water gas shift reaction: Effect of CeO2 contents and reduction temperature”
B. Chamnankid, K. Föttinger, G. Rupprechter, P. Kongkachuichay
Journal of Nanoscience and Nanotechnology, 16 (2016) 12904 – 12909.

The growth of an ultrathin zirconia film on Pt3Zr examined by-HR-XPS, TPD, STM and DFT”
H. Li, J.J. Choi, W. Mayr-Schmölzer, C. Weilach, C. Rameshan, F. Mittendorfer,
J. Redinger, M. Schmid, G. Rupprechter
Journal of Physical Chemistry C, 119 (2015) 2462–2470.
DOI: 10.1021/jp5100846

“Surface modification during methane decomposition on Cu-promoted Ni-ZrO2 catalysts”
A. Wolfbeisser, B. Klötzer, L. Mayr, R. Rameshan, D. Zemlyanov, J. Bernardi, K. Föttinger, G. Rupprechter
Catalysis Science and Technology, 5 (2015) 967 -978.      
DOI: 10.1039/C4CY00988F

“Cu/Ni-Loaded CeO2-ZrO2 Catalyst for the Water-Gas Shift Reaction: Effects of Loaded Metals and CeO2 Addition”
B. Chamnankid, K. Föttinger, G. Rupprechter, P. Kongkachuichay
Chemical Engineering & Technology, 37 (2014) 2129-2134. 
DOI: 10.1002/ceat.201300869

Co3O4 – CO Oxidation and PROX

Operando XAS and NAP-XPS studies of preferential CO oxidation on Co3O4 and CeO2-Co3O4 catalysts
Liliana Lukashuk; Karin Föttinger; Elisabeth Kolar; Christoph Rameshan; Detre Teschner; Michael Hävecker; Axel Knop-Gericke; Nevzat Yigit; Hao Li; Eamon McDermott; Michael Stöger-Pollach; Günther Rupprechter.
Journal of Catalysis, 344 (2016) 1-15.

CO Adsorption on Reconstructed Ir (100) Surfaces from UHV to mbar Pressure: a LEED, TPD and PM-IRAS Study
Kresimir Anic, Andrey V. Bukhtiyarov, Hao Li, Christoph Rameshan, Günther Rupprechter
The Journal of Physical Chemistry C, 120 (2016) 10838-10848.

“Different synthesis protocols for Co3O4-CeO2 catalysts. Part 1: Influence on the morphology on the nanoscale”
J. Yang, L. Lukashuk, J. Akbarzadeh, M. Stöger-Pollach, H. Peterlik, K. Föttinger,
G. Rupprechter, U. Schubert
Chemistry – A European Journal, 21 (2105) 885-892.       
DOI: 10.1002/chem.201403636

PdZn & Pd2Ga − Methanol Steam Reforming

Günther Rupprechter
“Supported liquid metal catalysts: Popping up to the surface”
Nature Chemistry 9 (2017) 833-834.

K. Föttinger, G. Rupprechter
"In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga and Pd(Pt)-Cu nanoparticles"
Accounts of Chemical Research, 47 (2014) 3071-3079.
DOI: 10.1021/ar500220v

H.H. Holzapfel, A. Wolfbeisser, C. Rameshan, C. Weilach, G. Rupprechter
"PdZn surface alloys as models of methanol steam reforming catalysts: Molecular studies by LEED, XPS, TPD and PM-IRAS"
Topics in Catalysis, 57 (2014) 1218-1228.
DOI: 10.1007/s11244-014-0295-3

A. Haghofer, D. Ferri, K. Föttinger, G. Rupprechter "Who is doing the job? Unraveling the role of Ga2O3 in methanol steam reforming on Pd2Ga/Ga2O3"
ACS Catalysis , 2 (2012) 2305-2315.
DOI: 10.1021/cs300480c

C. Weilach, S. M. Kozlov, H. Holzapfel, K. Föttinger, K. M. Neyman, G. Rupprechter
"Geometric arrangement of components in bimetallic PdZn/Pd(111) surfaces modified by CO adsorption: a combined DFT, PM IRAS, and TPD study"
Journal of Physical Chemistry C, 116 (2012) 18768-18778.
DOI: 10.1021/jp304556s

K. Föttinger, J.A. Van Bokhoven, M. Nachtegaal, G. Rupprechter
"Dynamic structure of a working methanol steam reforming catalyst: in situ quick-EXAFS on Pd/ZnO nanoparticles"
Journal of Physical Chemistry Letters, 2 (2011) 428-433.
DOI: 10.1021/jz101751s

Ch. Rameshan, W. Stadlmayr, Ch. Weilach, S. Penner, H. Lorenz, M. Hävecker, R. Blume, T. Rocha, D. Teschner, A. Knop-Gericke, R. Schlögl, N. Memmel, D. Zemlyanov, G. Rupprechter, B. Klötzer
"Subsurface-controlled CO2-selectivity of PdZn near-surface alloys in H2 generation by methanol steam reforming"
Angewandte Chemie International Edition, 49 (2010) 3224-3227.
DOI: 10.1002/anie.200905815

Pd and Pt − CO Oxidation/ignition − in situ PEEM

Y. Suchorski, M. Datler, I. Bespalov, J. Zeininger, M. Stöger – Pollach, J. Bernardi, H. Grönbeck, G. Rupprechter
"Visualizing Catalyst Heterogeneity by a Multifrequential Oscillating Reaction"
Nature Communications, 9 (2018), 600 (1-6).
DOI: 10.1038/s41467-018-03007-3

Y. Suchorski, G. Rupprechter
“Local reaction kinetics by imaging”
Surface Science, 643 (2016) 52-58.

M. Datler, I. Bespalov, S. Buhr, J. Zeininger, M. Stöger-Pollach, J. Bernardi,
G. Rupprechter, Y. Suchorski
“Hydrogen oxidation on stepped Rh surfaces: µm-scale versus nanoscale”
Catalysis Letters, 146 (2016) 1867–1874.
DOI 10.1007/s10562-016-1824-4

Analysing the reaction kinetics for individual catalytically active components:
CO oxidation on a Pd powder supported by Pt foil
M. Datler, I. Bespalov, G. Rupprechter, Y. Suchorski
Catalysis Letters, 145 (2015) 1120 -1125.
DOI 10.1007/s10562-015-1486-7

Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale
C.Spiel, D.Vogel, R. Schlögl, G. Rupprechter, Y. Suchorski
Ultramicroscopy, 159 (2015) 178-183.

Initial stages of oxide formation on the Zr surface at low oxygen pressure: an in situ FIM
and XPS study”
I. Bespalov, M. Datler, S. Buhr, W. Drachsel, G. Rupprechter, Y. Suchorski
Ultramicroscopy, 159 (2015) 147-151.  

D. Vogel, C. Spiel, M. Schmid, M. Stöger-Pollach, R. Schlögl, Y. Suchorski, G. Rupprechter
"The role of defects in the local reaction kinetics of CO oxidation on low-index Pd surfaces: a PEEM, STM and MS study"
J. Phys. Chem. C, 117 (2013) 12054-12060.
DOI: 10.1021/jp312510d

D. Vogel, Ch. Spiel, Y. Suchorski, A. Trinchero, R. Schlögl, Henrik Grönbeck, G. Rupprechter
"Local light-off in catalytic CO oxidation on low-index Pt and Pd surfaces: a combined PEEM, MS and DFT study"
Angewandte Chemie International Edition, 51 (2012) 10041-10044.
DOI: 10.1002/anie.201204031
German: Angewandte Chemie, 124 (2012) 10185-10189.
DOI: 10.1002/anie.201204031

Atomically-Precise Clusters

Stephan Pollitt, Ernst Pittenauer, Christoph Rameshan, Thomas Schinger, Günter Allmaier, Noelia Barrabés, Günther Rupprechter
Synthesis and Properties of monolayer protected Cox(SC2H4Ph)m nanoclusters
J. Phys. Chem. C 2017, 121, 10948−10956.
DOI: 10.1021/acs.jpcc.6b12076

Annelies Sels, Giovanni Salassa, Stephan Pollitt, Clara Guglieri, Günther Rupprechter, Noelia Barrabés, Thomas Bürgi
Structural investigation of ligand exchange reaction with rigid dithiol on doped (Pt, Pd) Au25 clusters
J. Phys. Chem. C 2017, 121, 10919−10926.
DOI: 10.1021/acs.jpcc.6b12066

Book Chapters:

•K. Föttinger, Ch. Weilach, G. Rupprechter
"Sum Frequency Generation (SFG) and Infrared Reflection Absorption Spectroscopy (IRAS)"
Characterisation of Solid Materials: From Structure to Surface Reactivity,
J. Vedrine, M. Che (Editors),
Wiley-VCH, Weinheim, 2012, ISBN 978-3-527-32687-7.
•G. Rupprechter, A. Bandara
"Sum Frequency Generation Spectroscopy at Surfaces and Interfaces"
Surface and Thin Film Analysis, G. Friedbacher, H. Bubert (Editors),
Wiley-VCH, Weinheim, 2011, ISBN-10: 3-527-32047-4 ISBN-13: 978-3-527-32047-9, S. 407-435.
•G. Rupprechter
"Sum Frequency Generation Vibrational Laser Spectroscopy"
Encyclopedia of Materials: Science and Technology, J Buschow, R. Cahn, M. Flemings, B. Ilschner, E. Kramer, S. Mahajan, P. Veyssiere (Editors.);
Elsevier Science Ltd., Oxford, 2010, (invited), ISBN: 978-0-08-043152-9, S. 1-7.
•G. Rupprechter, S. Penner
"Catalysis by Thin Oxide Films and Oxide Nanoparticles"
Model Systems in Catalysis - Single Crystals to Supported Enzyme Mimics, Robert M. Rioux (Editor);
Springer, 2010, (invited), ISBN: 978-0-387-98041-6, S. 367-394
•G. Rupprechter
"Catalysis by Noble Metal Nanoparticles Supported on Thin Oxide Films"
Model Systems in Catalysis - Single Crystals to Supported Enzyme Mimics, Robert M. Rioux (Editor);
Springer, 2010, (invited), ISBN: 978-0-387-98041-6, S. 319-344.
•G. Rupprechter
"Sum Frequency Generation and Polarization-Modulation Infrared Reflection Absorption Spectroscopy of Functioning Model Catalysts from Ultrahigh Vacuum to Ambient Pressure."
Advances in Catalysis, 51 (2007) 133-263 (Elsevier).
•G. Rupprechter, G.A. Somorjai
"Adsorbate Properties of Linear Hydrocarbons on Metals and Semiconductors."
Landolt-Börnstein: Physics of Covered Solid Surfaces (Springer),
I. Adsorbed Layers on Surfaces, III/42-A5 (2006) 243-330.

Further Reading:

•A. K. Opitz, A. Nenning, C. Rameshan, R. Rameshan, R. Blume, M. Hävecker, A. Knop-Gericke, G. Rupprechter, J. Fleig, B. Klötzer
"Improving electrochemical water-splitting kinetics by polarization-driven formation of near-surface Fe0: An in-situ XPS study on perovskite-type electrodes"
Angewandte Chemie International Edition, in press.
•N. Barrabes, D. Cornado, K. Föttinger, A. Dafinov, J. Llorca, F. Medina, G. Rupprechter
"Selective hydrodechlorination of trichloroethylene on noble metal promoted Cu-hydrotalcite-derived catalysts."
Journal of Catalysis, 263 (2009) 239-246.
•N. Barrabes, M. Garcia, A. Dafinov, K. Föttinger, G. Rupprechter, F. Medina, J.E. Sueiras
"Study of Pt-CeO2 interaction and the effect in the selective hydrodechlorination of trichloroethylene."
Applied Catalysis B: Environmental 87(2009) 84-91.
•G. Rupprechter, C. Weilach
"Vibrational studies of surface-gas interactions at ambient pressure"
J. Phys.: Condens. Matter 20 (2008) 184020
•K. Föttinger, R. Schlögl, G. Rupprechter
"The mechanism of carbonate formation on Pd-Al2O3 catalysts"
Chemical Communications, 2008, 320-322.
•G. Rupprechter
"Sum frequency laser spectroscopy during chemical reactions on surfaces"
MRS (Materials Research Society) Bulletin, 32 (2007) 1031-1037.
•G. Rupprechter, C. Weilach
"Mind the gap! Spectroscopy of catalytically active phases."
Nano Today, 2 (2007) 20-29.
•H. Gabasch, A. Knop-Gericke, R. Schlögl, M. Borasio, C. Weilach, G. Rupprechter, S. Penner, B. Jenewein, K. Hayek, B. Klötzer
"Comparison of the reactivity of different Pd-O species in CO oxidation"
Physical Chemistry Chemical Physics, 9 (2007) 533-540.
•G. Rupprechter
"A Surface Science Approach to Ambient Pressure Catalytic Reactions."
Catalysis Today, 126 (2007) 3-17.
•H.-J. Freund, M. Bäumer, J. Libuda, T. Risse, G. Rupprechter, S. Shaikhutdinov
"Preparation and characterization of model catalysts: From ultrahigh vacuum to in-situ conditions at the atomic dimension."
Journal of Catalysis, 40th Anniversary Commemorative Issue, 216 (2003) 223
•G.A. Somorjai, G. Rupprechter
"Molecular studies of catalytic reactions on crystal surfaces at high pressures and high temperatures by infrared-visible sum frequency generation (SFG) surface vibrational spectroscopy."
Journal of Physical Chemistry B, 103 (1999) 1623 (Feature Article).
•G.A. Somorjai, G. Rupprechter
"The flexible surface: Molecular studies explain the extraordinary diversity of surface chemical properties."
(Foreword by Glenn T. Seaborg)
Journal of Chemical Education, 75th Anniversary Issue,75 (1998) 161.

More publications...

Cooperation Partners

  • NAP-XPS: Prof. Robert Schlögl, Dr. Axel Knop-Gericke (Department of Inorganic Chemistry, Fritz Haber Institute, Berlin, Germany); Prof. Valerii Bukhtiyarov and Dr. Andrey Bukhtiyarov (Boreskov Insitute of Catalysis, Novosibirsk, Russia): In situ synchrotron AP-XPS (BESSY II) at mbar pressure for monitoring UHV-grown and powder catalysts under reaction conditions.
  • EXAFS: Prof. Jeroen van Bokhoven (ETH Zurich and PSI). XAS on powder catalysts under operando conditions.
  • DFT: Prof. Konstantin Neyman (Departament de Química Física & Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Spain) and Dr. Henrik Grönbeck (Centre for Catalysis and Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden): DFT calculations of the structure and adsorption/reactions on bimetallic surfaces (KN) and on metal, oxide and metal-oxide surfaces/interfaces (HG). Prof. Peter Blaha (IMC, TUW) on DFT studies of metal-ceria interfaces.
  • IRAS and Model Catalysis: Prof. Jörg Libuda (University Erlangen-Nuremberg): IRAS, XPS and molecular beam studies on complex planar model catalysts. Dr. Davide Ferri (Paul-Scherrer-Institute) on concentration-modulation FTIR experiments on powder samples.
  • Catalyst Synthesis and Characterization: Assoc. Prof. Dr. Paisan Kongkachuichay, (Kasetsart University, Bangkok, Thailand): Cu-based catalysts for water gas shift.

SFB FOXSI Cooperation Partners